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ABSTRACT

The weak form of the free boundary probiéﬁ for an axisymmetric partially
penetrating well may be formulated as follows: find ¢(r) e co([ro,r1]) and

wecd®@ nv'(®) such that

q rVurVvdraz = 0 for all v e K, ;

and u satisfies appropriate boundary conditions. Here, u is related to i
the hydraulic head, ¢(r) 1is the unknown water-air interface, 2 1is the
region of saturated flow !
Q= {(r,z)]0 < r < Ty 0<z<hlu {(r,z)lr0 <r<r., 0<z<o(n)} , 3

1
K, is a convex set in the weighted Sobolev space V1(9). :

We reduce the problem to three families of variational inequalities by

using a type of "Baiocchi transform”, study equivalence of the three families
and reqularity of the solutions of the variational inequalities. Finally, we
prove the existence of the solution for the well problem.

AMS (MOS) Subject Classificationsg: 35320; 35J65; 35370; 35R05; 35R35; 76S505.
Key Words: Free Boundary problem; axisymmetric well; weighted Sobolev spaces;
families of variational inequalities; existence.
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X
: SIGNIFICANCE AND EXPLANATION

When an axisymmetric well partially penetrates a water aquifer, the water

flows through the ground towards the well. By pumping water from the well,

3 steady flow is obtained. The flow is governed by a linear second order

elliptic differential equation which degenerates at the axis of symmetry. We

1
é reformulate the problem as families of variational inequalities, and study the
f; reqularity of the solutions of these variational inequalities. Finally we
prove the existence of the solution for the well problem, The variational
i inequality formulation suggests a new numerical method for the partially

penetrating well problem.
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The responsibility for the wording and views expressed in this descriptive
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THE SOLUTION OF 'PHE FREE BOUNDARY PROBLEM
FOR AN AXISYMMETRIC PARTIALLY PENETRATING WELL

* ak
C. We Cryer and S. Z. Zhou

Introduction

The free boundary problem for a fully penetrating well in a layer of soil
of permeability K(x,y) = exp[f(x) + g(y)] has been solved by Cryer and
Fetter {1979] using variational inequalities. 1In this paper we consider the
problem for a partially penetrating well. A type of "Baiocchi Transform"
(Baiocchi [1974]) is used to derive a corresponding family of variational
inequalities. Existence of the solution is proved. To this end we use the
theory of weighted Sobolev spaces and some results in Chang and Jiang [1978].

1. Weighted Sobolev Spaces

Our problem is governed by a deyenerate elliptic equation. Degenerate
elliptic equations can often be associated with a weighted Sobolev space (e.g.
Murty and Stampacchia [1968]}, Trudinger [1973]). Various kinds of Sobolev
spaces have been studied (e.g. Jakovlev [1966), Cryer [1980}, Chang and Jiang
[1978], Leventhal [1975] and Zhou [1980]). We recall some results.

Let A be a bounded domain in the (r,z)-plane with a locally Lipschitz
boundary [, and with r > 0; C:(A) - the space of functions infinitely
differentiable and with support compact in A; C:(A;Pi) - the space of

functions infinitely differentiable in A and vanishing in some neighborhood
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of T where Pi CT. 1P(A;r) -~ the space of measurable functions

1'
satisfying

vl = IA riviP drdz < = .
tPa,r)

We define weighted Sobolev spaces as follows:

vo(A) = Lz(A:r)
V1(A) = {vlaav e Lz(Atr), ja] <€ 1}

v
vZay = {v| % 30 v e t2air), lal < 2}

with norms, respectively,

Wi = il 'w
v (A) tP(a,r) |
we o= ] 13%1 0
vV (A) |a| <1 Vv (A)
Wi, = ] n%i + 12y ] .
vi(a) lal<2 v’ () IR AT

{(1.1)

(1.2)

{1.3)

o0 (-
Denote by V;(A), V;(A;Ti) respectively the closure of CO(A), CO(A;Pi) in

v,
Lemma 1.1. VO(A), V’(A) and V2(A) are Banach spaces.
Lemma 1.2. (Green's Formula). If u, v € v1(A), then

IA ru %% drdz = -fA v 2%521 drdz + IP ruv cos{n,r)ds

d(ru)

= -IA vV 5L drdz + IP ruv cos(n,z)ds

where n is the outer normal of T.

Lemma_ 1.3, If A_ is a closed subdomain of A and 3Ae N {r =0} =g,

then

1 1
Viag) = H (A .

5 0 Sy LSRR
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Now let A be the three dimensional domain formed by rotating A about
z-axis, and let si be the surface formed by rotating Pi about the z-axis.
Lemma 1.4. If v(r,z) € VK(a), k = 0,1,2 and
2. 2
f{x,y,z) = v(¥Y x +y , 2) (1.4)
k * k * *
then f @ H'(A ), where H (A ) is the usual Sobolev space, and A is the

-
interior of A .

0} = g, then

Lemma 1.5. If v @ V(A) and Ti {x

T ;s " aniyl 3 ,
H (A) VvV (a)

54

By using Lemma 1.5 and results in Sobolev [§10, 1950] we obtain:

[ f%as = 2= I rvids .
i

Lemma 1.6, If v e V;(A:Fi) and

mes[r;\(ri N{r=0h1 >0

then
2 dvy2 Ivy2
vl <c [ 1(52)° + (55)°ir araz
V’(A) A''9r 9z

where C does not depend on v.

2. Descritption of the Problem

The problem to be considered is shown in Figure 2.1.

A cylindrical well of radius r, partially penetrates a layer of soil of

depth H and radius Tqe Take the axis of symmetry as the z-axis. The

bottom of the soil layer is impermeable. The distance of the well bottom from

the bottom of the soil layer is h. We assume that the soil layer is
homogeneous and isotropic; that the water is imcompressible; that the flow is
irrotational and steady (in particular the height of water on the outer

boundary of the so0il and in the well ig respectively H and hw)’ that the

permeability k(r,z) = 1.
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Figure 2.1

The cross section of the soil layer is

R U ul o
D= V%Y (2.1
where

91 = {(r,2)}0 <rSrg, 0 <z < hl

92 = {(r,z)lro ¢r<r, 0<z< e(x)}

93 = {(r,z)lro <r < L ¢(r) € z < H}
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and z = ¢(r) is the boundary between the wet region & = 91 v 92 and dry
region 93. It is called the free boundary as it is the unknown part of 3,
Denote by p(r,z) and u(r,z) respectively the pressure at point (r,z)
of D (the atmospheric pressure being measured by zero) and the hydraulic
head, then we have
u(r,z) = p(r,z) + z in 0 ., (2.2)
It follows from Darcy's law and the equation of continuity that (see Hantush

{1964], or Cryer {1976, p. B6})

2 2
_9%u 1 9u , 3%
Lu-—-z- +-;5-;+—5=0 in 2 . (2.3)
ar 9z

We introduce the notation

-3
[}

1 {txr,2)]10 < r < ryez= 0}

{tr,z)|xr = . 0 < z < H}

-3
(]

e ]
[]

{(r,z)lr0 <r<r,, z=H}

1
, h ¢ z < u}
w

-3
L}

4 {tr,2)ir - r,

3
i

{{r,z)lr =r ,h < z< hw]

(]

P6 = {(r,z)10 < r < Ty 2 = h}

{(r,z)|lzr =0, 0 < z < h}

-3
1]

~3
[}

{(r,z)lr0 <r<r,z= o(r)}.

Then u(r,z) satisfies the following boundary conditions:

u=H on Fz {constant hydraulic head)

u=g2z on Po V) (I‘4 N 31) (interface with air) {2.4)

u = hw on PS V) P6 (interface with water at rest)




g% = 0 on Po v P1 (streamline)

. (2.5)

%% = 0 on P7 (symmetry)

Now we can state our problem in weak form.

Problem (PPW)

Given the domain as in (2.1), and a real number hw such that

h < h, < H, £ind functions ¢(r) and wu(r,z) such that u satisfies (2.4)

and
) 0
vec ([r0.r1})u W(!‘1) = H, ¢(r0) > hw ’ (2.6)
¢ 1is strictly increasing , (2.7)
vev@nd® , (2.8)
fn rVuVv drdz = 0 for all v €K, (2.9)
where
Q= a, u {tr,z) e D|r > rge 0 <z e(xr))
1
= = r v o
K, {vev (d)|lv=0 on ) (r4nan) uI‘5 rs}

Remark 2.1. This problem can be regarded as a plane problem with permeability
K = exp(&n r), but it is not covered by the work of Benci [1974] because

in r ¢ H1’2+u([0,r’]). Also, it can not be included in Alt {1979] as a two-
dimensional problem. Rama and Das [1976] solved this problem by numerical
methods.
Remark 2.,2. Chang and Jiang [1978] have solved a similar problem by using so-
called "Sequence of set-valued mappings" instead of the method of variational
inequalities. Further results about obstacle problems have been obtained
recently by Chang [1980]. We use some results on linear equations given by
Chang and Jiang [1978]. But we solve our problem by using the method of

variational inequalities because the corresponding numerical method is more
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convenlent, and because in our case the boundary conditions and right term of

the nonlinear equation for the Baiocchi function w are different from those

in Chang and Jiang [1978].

3. The Balocchi Function w and its Properties

Agsuming a priori the existence of the solution u of (PPW), set (see

Baiocchi [1974], [1976), [1978])

- u(r,z) in R
ul{r,z) = {

z in 5\5

wir,z) = f: fulr,t) - tlat .

Remark 3.1. We can not use the transform

~ eolry
wir,z) = Iz u(r,t) - t}dc ,

(3.1)

(3.2)

where y(r) =H for r  <r<r and ¥,(r) =h for 0 <« < e since

0 1
dw 1,= :
3 ¢ C (D). This is obvious physically. (Cf. Lemma 3.6).

Now we derive some properties of w and u.
Lemma 3.1. Iu =0 in 8

u is analytic in TI\{PO, A, B, C, F, G, P, Q}

du

-a—gzo on ['1UI'7
du
=— =0 4in the weak sense on T .
on 0

(3.3)

(3.4)

(3.5)

(3.6)

o0
Proof. On writing (2.9) for any v € CO(Q), we obtain (3.3) in the sense of

distributions. From classical results on the regularity of the variational

o Sl I o )t st 1L AR




solutions of elliptic equations in the interior and on the smooth parts of the

boundary (see for instance Lions and Magenes [1972, §9, Ch. 2]) it follows

that

. u is analytic in 3\{PO, T, A, B, C F, G B, Q} .

—-—t
Denote by # the three-dimensional axisymmetric domain with cross-section

/ 2
Q. Then u*(x,y,z) =u(v x + yz, z) 1is a solution of the equation

-—

! du=0 in & where §! is the interior of R . Hence u and u are

*
because F7 is in 9, and (3.4) is valid. (2.9) implies

analytic on T7

1 (3.5) and (3.6) in the weak sense. (3.3), (3.5) are satisfied also in the

classical sense thanks to (3.4).

Q.E.D.

It follows from the three-dimensional argument above and maximum

Remark 3.2.

principle that if Lv > 0 in 8 with v € c>(%) then

vlr < max v
7 4]

]
and if in addition 3% S0 at the point ¢ then

vl < max v .

. 0 2

Similar results are valid for min v if Lv ? 0.

Lemma 3.2. ulr,z) >z in @ .

Proof. Set v = u - z. Then we have
(

Lv = 0 in

= N
v 0 on ro (98 P4)

v=H-2z on T

v=h ~ 2z on PS ur

v=+1 on r

on




Q

Since U 1is elliptic and v € Co(ﬁ), v attains its minimum, m sBay, in
* * *
at a point p € 3, But p ¢ F1 (by Hopf principle) and p é Y7 (by
*
Remark 3.2). So p € 39\(P1 v F7). Hence m 1is zero. It follows from the

strong maximum principle that v > 0 (i.e. u > z) in R,

Q.E.D.

Lemma 3.3. v @V (D) NC (D) (3.8)
_ 3OQ

Lu = - 3% in the sense of distributions (3.9)

where °n is the characteristic function of & in D.

Proof. By (2.4), (2.8) and (3.1) it is easy to see that ue CO(S). For any

-]
Ve CO(D) we have

f u 3z drdz = fﬂ + fnz IQ
_ (o h w(r) 3y 1 H 3y
fo dar f + f dr fo u 3z dz + fro dar o(r) ay, dz
. 3
= -f w drdz - f Y == drdz - f Yy drdz (Integration by parts)
Q 92 3z f
= f Y v drdz
where
du
32 in 0
V= L
1 in D\Q
Hence
du .
EE ) 3 in 9
3z 1 in D\R
Similarly we have
-9-

& . N e TP TBRRAR D T

e Pl S
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2; l 3 in Q
. 9 0 in D\®

Clearly, ue V1(D).

L.}
Now we prove (3.9). If Ve CO(D) then VY e K1. Hence we have for the

- a0
distribution Lu and every V € Cn(D)

<LE,r¢> = -ID Vu*V ardz
; 3
. = - fﬂ rYu*Vy daraz - ID\Q 35 r drdz

i v 3
= - [D 5, (1 - 8g)r draz = <5z (1 - &), %>

Hence (Schwartz [1973, §5, Ch. 21)

3
; a0
= - <-a-z-, > .
._i
It is just (3.9).
Q.E.D.
:j Proposition 3.4, Let w be defined by (3.2). Then
x - Lw = -8 in the sense of distributions. (3.10)
Proof. Since u € CO(E), we have ’
. YR
. Pl w(r,z) - z . (3.11)
- So in the distribution sense we obtain (by (3.9))
iy 90
: ] 9 - Q
Q; s (Lw) = L(sf) =Lu-1Lz=-=35— .
v
oY

Lw + 09 = T(r) @ 1{z) .

3
Since u 1is analytic in Q UV F1 and 3% =0 on P1, we have in Q:

2 2

3w 1 dw 9w
RS -

dr 3z

2

z (8u 13 du(r,z)

fo (arz + ar)dt S, 1
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By

Accordingly, T(r) = 0 and (3.10) is valid. L]

Proposition 3.5. w 1is a solution of the equation with
nonlinearities:
{ 0 for %% = 0
Iw = 3 o
w
-1 for -§—>0
z
Proof. It is enough to prove that

g_‘z!' >0 , if (r,z) e 2 .

= =0 , if (r,z) e D\R .

But this is obvious thanks to Lemma 3.2 and (3.11).

Lemma 3,6, g% = f:

e Y et e i

discontinuous

]
Y Swix,H) = constant = 0 for r € ]ro,r1[ .

dr

[ ]
Proof. For any V¢ € CO(D) we have
Ja w3
1 F 0

r
- ez fPae [0 Gee) -y Par

0

r
- 3
3% araz = Ig az f0° (J? [Q(r,t) - t] 3% ar

h z — z du
= [ @ [5 ur.e) - t1¢|r=roat - 191 w7 52 at)araz

B e )

Q.E.D.

(3.12)

QoE-D.

(3.13)

(3.14)

(integration by parts).

Similarly, we have

-11=




1

3y = - z = -
fn\$l1 w 5> drdz ID az fo la(r, &) - €19l _

Since VY =0 on {(r,z)|r=rO

T ; e

z du
at - !n\a1 wfy 5, atraraz .

0

, h € z < H}, we obtain immediately

3y . z du(r,t) -
!D w 3. drdz ID w(fo 5. dt)drdz for any ¥ € C (D)

dw(r,H)

(3.13) has been proved. Now set f(r) =r oz « Then for any

w
¥r) e co(]ro,r1[) we have

b 4 Y
(18 ear = [T, )
r, dr o dr or

i -
P 5
- fr' 5% r(fg -2%§*£l at)dr
0
i -
= Ir1 dr IH 2! r Eg%i*il dz
0

0 or

= Jg rVu'VW‘ drdz

where

Y(r) for r € ]ro,r1[
¢1(r.z) =
0 for r € }0, rO]

Clearly ¢1 e K1. Hence it follows from (2.9) that

b 4
13y _ o
Iro 5. £ dr =0 v yec r,rD

so f(r) is a constant for r € ]ro,r1[, which we denote by q.

Remark 3.3. Physically, 2¥q is the discharge of the well.

Proposition 3,7. Let

Q'EoDo




e

0
22
Hz-;-
gq=<
HZ
— 2n X~
2 +ta nr
1
2 r
H 0
Lz +qznr
1
h -h
w
gN 0
Then w(r,z)=qq
dw

% o Ty
S

where I‘D = 5:1 I‘i, I‘N = 1‘6 9 1‘7.

Proof. Thanks to (3.2) and (2.4) we have clearly

2

= r = - 2 ro.
w 0 on 1,w Hz D) on 2

Hence w(r,,H) = H2/2. Solving the ordinary differential equation

3
r -—-—~’-——w(a:_ H) = q we obtain
2
H by
= — n = T o
w=3 q i — on T,
1
Iw -
on ' we have == u - z = 0. Hence
4 dz
2 r
H 4
= = e l — .
w(to.z) w(ro,m > + q kn T,
dw
on [_ we have == = h - z and
5 3z w
2
2 r (h -2z)
z dw 5 0 W
- Sw = B n =2 o
W= wlrgho) 4 Ihw 3, 2=t a’in T 2




(3.16) is obvious.

Proposition 3.8.

w(r,z) = gq(r,ﬂ) in D\@ (3.17)

wir,z) < gq(r,ﬁ) in Sz\fz1 . (3.18)

Proof. (3.17) follows from (3.1), (3.2) and Proposition 3.7. (3.18) follows

from (3.17), Lemma 3.2 and the fact that u e Co(ﬁ).
Q.E.D.

Remark 3.4. We obtain another form of the nonlinear equation for w:

Lw =

{ 0 in {w= qq(r,H)}

1 in 91 U {w < gq(r,H)}

Proposition 3.9. w e V2(D) . (3.20)

Proof. By (3.2) and (2.,8) we have

dw 2w 2%
32’ ” 3 5—5— e V (D) . (3.21)

Differentiating (3.13) we obtain

32y
Py I e V (D) . (3.22)
Now we prove that
)
53;- e Vo) . (3.23)

In fact, we have

fD r(f: %% dt)2 drdz < fD rH[f: (23)2 dt}ldrdz (Schwartz inequality)

or
To h z (3uy2 T H z  (du\2
= H[IO dr [0 dz IO r(-g;) at + fr ar Io az fo r(-—;) at)
0
. r, -
< H(h f i ar fh (5-3)2&1: +H fr ar fH (33)2 at)
0

< H2 ID r(%—)z drdz ¢ = ,
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! At last we prove that

!.q‘ '
2
dw 9
-~ %—-}, ¥ evii;y . (3.24)
dr

By (3.10) we have, as distributions,

P,

R, 2w 13w
n - .
{ ar> 3z r 3
- 3
i Hence it i1s sufficient to prove that
A
1 3w 0
; -3, e v . (3.25)
1
" r r r
= tet R' = {(r,2)10 < r < 59, 0<z<hl, @ = (Eg,h), Al = (59,0), £(z) =
. ro © —k P 0 ¥
5 u(z7»z). Then ul_, €c (R \{a,0}) NC'(R) NV (R) (by Lemma 3.1), and
= R
T ul 4 is the solution of the boundary value problem
) ‘ R
*
: ( Lu =0 in R*
du
u|z=h hw' oz |z=0 =0

ul r = f(z), u is bounded near r =0 .

By using the method of separating variables we obtain that

)3k (3.26)

[ -]
9 1 X
I (x) = z v (— .
0 k=0 k! T(k+1) ‘2

)
§¥ = 0(1) as

L2 3 B

9
It is easy to show that 5% = 0(r) as r * 0, Hence

1 Ow o _*
r *0, and - 3. » © V (R )e Now (3.25) is clear.
r dr' o

Q.E.D,




. Proposition 3.10. wec® . (3.27)

4 In order to prove this proposition we cite a theorem in Chang and Jiang
{1978}, the proof of which is given in the Appendix.
Theorem 3.A. If v e V2(D) and Lv =f € LP(Dix) (p ? 6),

9 B = 3
ver = 3§'PN = 0, then v @C (D) (B E)ﬂ

; Proof of Proposition 3.10:

At first we construct a function vq such that

- - [ ]
K v € VZ(D) N C1(D), Lv_e L (Dsr) J .
q q

- To this end we set (cf. Bajiocchi et al. [1973], Chang and Jiang [1978]1)

4 vq = vy + qu, (3.29)

< <
fo(z) 0 r

i 2r~r -r, 2 r tr,
: [£,(2) = £ (@) (———) + £, (2) 5 r<r

1°0

LAy




r -
5 .. % St o
f(z) he€z<H
4 fo(z) =
-‘ -
' £(z)[1 - (5-;;’1)21 0<z<h
' 2
f1(z) = Hz -~ E—-
) r0 r 2 r \3
. ln;—+3(-t-') —2(;—') -1 0<r<ro
N 1 0 0
fz(r) = . (3.32)
: tn = <r <
» n T ry ¢r x,
1t is readily verified that
¥ (o on I'1
22
v1|r = Hz - 3 on r2 (3.33)
D
| - -
2 on %3 T 74
. 2 (h —2)2
‘ |« S S on T ]
! . L 2 2 5
r 3v1
. 3l = 9% (3.34)
R N
A
3
B 0 r ur
A} on T, ”
v2|rD = . (3.35)
ln;-; on I‘3UI“4UI‘5
3
y v
+ @ 2
) -5"n—'|r = 0 (3.36)
"' N B
2 1=
Vi Y, e v (D) NC (D) {3.37)
[ ]
LV1, va eL (D}r) . (3.38)
! s, -17-
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Hence (3.28) is valid.
Now we set Vv = w = vq, then v & v2<o) (by (3.20) and (3.28)), and

[ -]
Lv = -@9 - qu € L (D;r)

dv
vln, =], =0
Iy
PD on -

(3.27) follows from Theorem 3.A immediately.

Q.E.D.
Proposition 3.11
0 H —-— —
a= lim —=— [ [u(r,t) - u(r_,t)}at
r~- h 0
I¥r,+0 0
(3.39)
1 (o~ -
+ lim —— IO [u(r,z) - u(r,h)lr ar .

z*h-0

Proof: By the mean value theorem of differentiation we have that for any

re ]to,r1[ there exists § € ]ro,r[ such that
H - - H — H -
fh [u(r,t) - ulry,t)ide = fh [u(r,t) - t}dt - fh[u(ro,t) - t]at

= w (r,H) - w(xr,h) - [w(ro,H) - w(tolh)]

dw(E,H) _ dw(§,h)

= { or 3y } (r-1xr.) .

0

It follows from (3.27) and (3.15) that

aW( rO'h)

H— —
fh [u(r,t) - u(rg,e)ldt = q - ry —5- .

r
(3.40)

lim
r-r

*r +
r ro 0 0

On the other hand, for any =z € }0,h[ there exists a n € Jz,h[ such that

Y b o -
1 0 - - [0 Ju(r,n)
= [o (u(r,z) - ulr,h)ir ar fo i LI (3.41)
-18—
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Let Dy = {(r,2)]0 < r < rer 0 <z < n}. It is easy to show by Green's

formula that

du(r,,z) r -
- =, - M 0 _ (0 _ du(r.n)
0 fD1 Lu°r drdz fo r, . dz fo r 3z dr

So we have

- du ]
o drm oyl (O Mreem) o M%) (3.42)
, 0 3z 00 or 0 dr ) *
&
Now we obtain (3.39) by (3.40) - (3.42) and (3.27). )
i Q.E.D.
Remark 3.5. Physically, (3.39) means that the total discharge to the well
consists of two parts: one is across the wall of the well, another is across
the bottom.
* 4. Variational Inequalities (VI) Satisfied by w; Reqularity of the Solution
! of V1
—j Define functions for every v € V1(D):
t-q
=
R i Q <
¥ v in 1 {v qu}
y v! = (4. 1)
, (r,H in {v»> }
gq +H) qu
by
A Q <
: 0 in R, {v gqﬂ} m
X v o= (4.2)
R v - {(r,H) in {v»> } ‘
A . qq v qu
k
N : where {v < qu} = {(r,z) e D|jr > r, v(r,z) € gq(r,H)}

{v > qu} = {(r,z) e Djr ? e vir,z) > gé(r,H)} .

Then, clearly, we have

-19-
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0
v=vy'+v", v" 20, v' < gq(r,H) for r e ]ro,r1[, v, v e v (D) .
(4.3)

Let

1
kK ={vev(p = ri . (4.4
. v OIRY gq on [] )

We have

Theorem 4.1, If u is a solution of (PPW), then w defined by (3.2) is a

solution of the VI:

wekx
q

r
™ - - - o - - [ I } 2
fD rVweV(v-w)dradz (hw h) fO (v w)(z=hdr fD (vl'-w')r dr dz > 0 (4.5)

for v ex .
q

Proof: By (3.20) we have w € VZ(D). Apply to w and to any v € Kq

the following Green's formula:

| o TV Viv=w)ardz

w dw
- fD rlwe{v-w)drdz + frD r{v-w) Bn ds + er r(v-w) n ds

r
0

= D o - - -

ID 9ot (v-w)drdz + (hw h) jo (v w)‘z=hr ar
‘o
= fQ r(v-w)drdz + (h _-h) [0 (v-w)l__ r ar
’ f r{v'-w')drdz + (h -nh) fro( ~w) | ar (V” 20 and)
1] w w g (VW T W =0 .

But - ID Q(v'-w')r drdz = ~ f Q[v'-gq(r,H)lr drdz * 0 (by (3.17)). Hence

D\

(4.5) is valid.

SRS &




Remark 4.1, It is easily seen (by (3.17) and (3.18)) that w is also a

solution of the VI

*
wek
q

r
0
Ywe - - - - - - > .
ID rVweV(v-w)drdz (h -h) fo (v w)lz'hr dr ID r(v=w)drdz > 0 (4.6)

*
for vex
q

where

D
Remark 4.2, Noting (3.7) we have that w is also a solution of VI

»*
l(.q = {ve V‘(D)Iv = gq on I', v¢ gé(r,ﬂ) in 0\81} . (4.7)

'Y
w ek
q

r
0
. - - - - - ? .
ID rVweV(v-w)drdz (hw h)fo (v w)Iz_hr dr fD (v-w)r drdz > 0 (4.8)

*¥
for vekx
q

L 2 ] *
where xq = {ve quv >0 in D} . (4.9)

Remark 4.3. For numerical solutions (4.8) is the most convenient VI, By the
well-known result (Lions [1971, p. 9]), Problem (4.8) reduces a minimization
*h
problem on a convex set as follows: find w e Ka such that
J(w) = min J(v) (4.8")
L2
g
where
r dr = 2 ID vr drdz .

r
3wy = [ r|Vi?araz - (n -n) [ ° Vo

{4.8') is the basis of numerical solutins to (PPW) by using Vi'sa,




-,

-ty

For q € R, (4.4) is a family of VI's. So are (4.6) and (4.8). Now we
study these families.

Proposition 4.2. ¥ g € R, (4.4) has unique solution wq.

Proof: Set ve={vae V‘(D)Iv =0 on P1} ] V;(D;r1)

a(u,v) = ID rVu*W drdz

f(v) = ID v'r drdz + (hw-h) f:o rvlz=hdr .
Then V is a Hilbert space with inner product (u,v)v
= fD r(uv + VueVy)dr dz; Kq is a closed, convex, non-empty (e.g. Yq e Kq;
see (3.28)) subset of V; a(u,v) is a bilinear, continuous and coercive form
on V XV (by Lemma 1.6); and it is easy to show that f£(v) is a convex,
continuus functional on V with f(v) # =® and f(v) # +*®. By the well-
known theorem (Lions and Stampacchia [1967, theorem 2.2]), we obtain the
conclusion of our proposition.

Q.E'Do

Proposition 4.3, ¥ g ¢ Ao+ where

H2 - (h -h)z
w

q, = —E—E;T;;7;;7 (4.10)

(4.6) has a unique solution. (4.8) also has a unique solution.
The proof is similar to that of Proposition 4.3. The condition ¢ < 9,
* * &
ensures that both Kq and Kq are non-empty.
We will prove later that the problems (4.4), (4.6) and (4.8) are

equivalent for g € q, {(Theorem 4.13). Now we study (4.4) in detail.

Proposition 4.4. ¥ q € R, the solution s of (4.4) satisfies, in the sense

of distributions, that

-1 <Lw <0 (4.11)
q

-22-
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Proof: Given VY e CO(D), V20, Let v = wq - Y. Then v e Kq

- i Q v <
¥ in . {wq qu}
[ ¢ = - - < +
v w Y ¥ gq(r,H) in {qu < Yy I v}
0 in w > + 9} .
q” TtV

Hence

V' - w’ by w . (4'13)
g

On writing (4.5) with v = Wy = vV and w = Wy we obtain that

r
0 < -fD rqu°V¢ drdz - (hw-h) foo ry| ar - ID r(v'-w&)drdz

z=h

P A et e e e

€ - V . + = +
fD Y wq RY dr 4z ID ry drdz <qu 1, >

[ -]
for any VY € CO(D), v>0 .

e e  ——

Hence qu + 120 . (4.14)

(-]
Similarly, given V¢ @ CO(D), Y20, let v = wq + Y. Then v' ? w&, and

Aty

(4.5) becomes that
< v 7 - [} < v 7
0 fD r wq Ydrdz fDr(v wq)drdz fs r wa Ydrdz
-]
i.e. <qu, ry > S0 for any VY e CO(D), vy20 .

Hence qu < 0.

This inequality and (4.14) prove (4.11), and (4.12)follows from a well=-known

theorem (Schwartz [1973, th. v, p. 29) and Radon-Wikodyn theorem.

QaE|Do
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’ Proposition 4.5. If wq is a solution of (4.4), then

| g
. an |I|N gN . (4.15)

Proof: At first we prove that, in the sense of distributions,

! ow
i 3—9 =h -h on T (4.16)
L z w )
X o
5 —33 =0 on T, . (4.17)
‘ Y 7

oo
Given ¢ e CO(PG) such that ¢ » 0, and E > 0, we construct an element
1 . . i ~
We e V (D) with We 0 in D, ws = V¢ on PG' ¢€ =0 on PD and

ID ry_ drdz < € . (4.18)

¢ . Let v = Wy < we' Then we have v' - w& » ¢e similar to (4.13). It follows

from (4.5) and generalized Green's formula (Baiocchi and Capelo [1978;

= - 5 Appendix 4 of V.1)
. Ty
€ - Yw oV -
0 ID r wq wedrdz + (hw h) fo rwe|z=hdr + ID r¢e drdz
dw
- =3 - "
< <qu,rwe> Ny ,rws>r6 + <hw h, rwe>r6 + <1, z¢€>
i.e.

dw
<5;3 - (hw-h), rwe>P6 < <qu +1, r we> . (4.19)

On the other hand, writing (4.4) with v = Yq + We we obtain

r
0
< TJw *V - - 3 1> W
0 ID r wq ¢€ drdz - (h h) IO r¢€lz=hdr (since v wq)
dw
= - N | - -
<LWq,rW€> * <G 1r'l.'€>r.6 <hw h, r¢a5>r.6

-24-
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ie.e.
dw

—3 -
<3z (hw h), rwe>r6 ? <qu, rwe> . (4.20)

By (4.19), (4.20), (4.11) and (4.18) we have (since V¥ = we on Ps)
dw

<3;9 - (hw-h)' rw>r6, < f5 rwe drdz < &

Since € > 0 is arbitrary, we have

ow IS
<3 = (h -h), rwe>r6 =0 wvecyry, v2>20 .

This proves (4.16). Now we prove (4,.17).

Introduce the notation:

F qu

v = w(v x2+y2,z) for any function v(r,z)

* {tx,y,2)|1(r,z) €D, *x =V x2+y2} {(x,y,z) |x=y=0, 0 ¢ z < h}

* Q

o]
]

. —
Pi = {(x,y.2)(r,2) € Fi, r = /r'x2+y2}

* /

PD = {(XIYp2)|(r'z) e PDI r = X2+Y2} .

Then D' is a three~dimensional axisymmetric domain whose boundary is

L ] * »*
PD v PG, and "§ is the solution of the problem:
r’ * * *
Aw = F in D
q g9
* * P'
w_= on
a % D

*
ow
\ 5;3 = hw -h on r6 .




w . 3 o ot " g s
B s p-».o,u,";v,c—’y‘nfq:

* [ J » * zlp
By (4.11), Fq e L (D). Hence quD eH (D1). p ¢ ®, where Dy =
1
L ]
{(x,y,z)l(x,y,z) ep, //;2+y2 < ro - §}. By embedding theorem we have that

‘ wec®d) . (4.21)
q 1
. Now it is easily seen that
t
* *
aw aw -
e =3c0=0 at x=y=0 in Dy -
: Hence
ow
i 3;2=0 at r=0 in D
) (4.17) has been proved. Moreover, (4.21) means that (4.15) is valid in
o
ordinary sense,
Q.EODO
Now we need the following results (see Chang and Jiang [1978]).
x -, Lemma 4.A. Let f € LP(D;r), p > 2. Then the problem
L]
: v = f in D
. 39
vip =3-1p =0
r r
p ol
';i has unique weak solution Vv in V’(D), and v @ CO(E). Moreover, the linear
&
b8, 0,=-
; operator K: f " v, mapping LP(D;r) (p ®> 2) into C (D), is compact.

Theorem 4.B. Let

2 R}
um) = {vevimilv=0 on T, 3% =0 on T} ,

Denote by R(L) the range of the operator L as a map from U(D) into

1
VO(D). Denote by R(L) the orthocomplenment of R(L) in VO(D). Then

1
dim R(L) = 1




T TN R

TRv

F .

)

-
K

1
i.e. there exists vo € R(L) such that

R(ml = {ve VO(D)Iv ~ W, ue R} .

Remark 4.4. It is easy to show that K 13 also a compact operator mapping

LP(D;r) into V(D).
Now we verify the continuity of the solution of (4.4).

Proposition 4.6. 1If Vg is a solution of (4.4), then

Yo e c°(b') . (4.22)

Proof: Let £ = qu -qu, where Vg is defined by (3.29). Then

* [}
f eL (D;r), and the problem

* *
v = € in D
* at
v
vip =3, Ip =0
D N

has unique solution in V1(D) which belongs to CO(E) (by Lemma 4.A).

Clearly, v' = w_ - vq is the solution of the problem. Hence wq e CO(B).

q
Q.E.D.
Proposition 4.7. Assume wq is a solution of (4.4). Let
= vug
Qq {(r,z) e Dlr » Tor Wy < qq(r,H)} 1
Q" = {(r,z) e Dl (r,H)}
= r,z) € Djr > r w_ > r,H o
q ! 0’ g’ YT
Then, in the sense of distributions,
-1 in Q
q
Lw = .« ° {(4.23)
9
0 in Q
q

* 0
Proof: By (4.22) both Qq and Qq are open sets. Given V e co(ﬂq),

define ¢ £ 0 in D\Qq. Clearly EW c ﬂq, where EW is the support set of

Y. Let

id
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|
m= min (g (r,H) - w ) .
> q q
Ewn{r ro}
‘ .
Then m > 0, and there exists A > 0 such that for each real A with
*
- A} € A we have
A9 € m
w + AW <g(r,8) in QN {r>r} .
‘ a gq ‘ q 0
On choosing in (4.4) v = v * Ay, we obtain
1 0 < IQ Vw *V(AP)drdaz - A IQ ry drdz
: q
q q
) i.e.
>
A fn rVw *Vy ardz > A f‘2 ry drdz .
q d q
As the sign of X is arbitrary, we have
(- ]
- fQ rYw *Vy draz = fﬂ ¥ drdz =V y~C C. (R )
q 0" ¢q
. q q
‘1
’ *
. .e. ==-1 in £ . Simi = Q.
| i.e qu 1 in a Similarly, we obtain qu 0 in q
Q.E.D.
2 1
';ﬁ Lemma 4.8. Let f, = Lv,, where v, is defined by (3.31). If v e R(L),
by then
B = ID vE, r drdz ¢ 0 . (4.24)
1l
Proof: Assume B8 = 0. Then £, L v, and £, L rR(W) (by Theorem 4.B). So

*
f, 8 R(L). It means that there exists v @ 1I(D) such that

*
Lv f2

» ) *
v
vilp =37l =0 .
D N

] * -—
By (3.3R), f2 €L (D;r)e Hence v € c‘(o) (by Theorem 3.A).

vy - v*. Then v & (D) N c‘(B), and
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Lv = 0 in ©
ur
0 on P1 2

v =
r { r
— r
4 D lnr on I‘3u4ul‘5

dv
=, =0 .
L 3n YN
Hence v has minimum in D, which lies on 9D; but not on P6 (by Hopf
principle); nor on T7 (by remark 3.2). It must be on YD and
r
min v = v{r,,h) = &n — .
D 0 ol
Bt .y ., then <2 = 0 at the point (r.,h) (as v e ¢'(D)
ut = on T, en 3= a e poin Tye .

This contradicts the Hopf principle. é

Q.E.D.
Theorem 4.9. Assume A is defined by (3.29), fq = qu. Vg is the
solution of (4.4), Fq = qu. Let Vv € R(L)l.
G(q) = (F - £ )vrdrdz (4.25)
@ = [, -t

then the following two assertions are egquivalent:
(1) E is a root of the equation

G(g) =0 (4.26)

2y w_evim nc'd. (4.27)
q

Proof: If G(q) = 0, then

[ (F_ - £_)vraraz = 0

q q
i.e. (F_-f£f)L1lv in vo(p). By Lemma 4.A we have

q q
L(w_ - v_) e R(L)

q q
Hence

w_-~v_eu .
q q

~29-
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. It follows from Theorem 3.A that

4 w-v_ec® . (4.28)
: q q
' We obtain (r.27). Conversely, if (4.27) is valid, then F_ - f£_ € R(L).
' q q
hl (4.26 follows from the fact that v e R(L)l.
Q.E.D,.

Lemma 4.10. (4.26) has at least one real root.
Proof: At first we prove that the function
’ I
F (q) = D Fq vrdrdz

is continuous in ~® < g < +%°,

Given q' e R, let {q,}] be a sequence converging to q', w_. be the
i 4

. N
. solution of (4.4) corresponding to gy, vqi be defined by (3.29), and vq =
i

wqi - vqi. Then we have
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By (3.29) - (3.32) and (4.11) the sequence {Fq - fq } is bounded in
i 1

| ' Lz(Dxr). Therefore it is possible to select a subsequence, still called

, {(r -f 1}, in such a way that
' Q@ q

{F -f } converges weakly to F in t?(psr) . (4.29)
qi qi
It follows from Lemma 4.A and Remark 4.4 that
* * -
, {vq } converges strongly to v  in ) (4.30)
1 i
* *
' (vq } converges strongly to v in v'(p) (4.31)
! i
- -
where v sgatisfies ]
* -
Lv = F
a *
v
v 'I\ = Tn-lr =0 .
I” - *
Since w_ = v_ + v , we have (by (4.30) and (4.31))
. a3 9y 9
' {wq } converges strongly to w in CO(B) (4.32) ;
i .
,_; {wq } converges strongly to w in V1(D) (4.33)
. i
b A
3 where w = v _, + v.. Accordingly, wi =g , (by (4.32)), i.e. w@K.,.
] q I‘D q q
’1 ' We also have
N w=¢f +F . (4.34) ,
R 1 ;
i ¢ Now fix any v € Kq.; it is easily seen that there exists a sequence {vi} é
" such that vy € XK, and {vi} converges strongly to v in V(D); so that
. i
¥
’ from
o
V 'V - - - -
[p ey *T(vy = w ardz - (n, - m) [Ty, “q, |emn¥er

i i

, ) - YW >
| [y wtvy wqi)drdz 0
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it follows (remark that (4.33) implies w! *w' in L'(Dsr)) that

r
] - - 0 =
[D rVweV({v-w)drdz + (hw h) fo (v ')'z-h rdr

- fD r(v'-w')drdz > 0 .

Hence w is the solution of (4.4) for g = gq'; i.e. w= Wors and (by

i (4.34))
‘ w ,=F ,=f  +F . (4.35)
i q q q
f By (4.29) and (4.35) we have that
o
: {r } converges weakly to F _, in Lz(Dar) .
-1
This means that for any {qi} with 1lim q = q' there exists a subsequence,
: jore
still called {qi}' such that
lim f F_ vrdrdz = fD F_, vrdrdz .
x -, qi..qc U q
.I
: Accordingly, F*(q) is continuous. Clearly, F*(q) is also bounded (by i
$
L (4.26) may be rewritten as :
T*’ .
) F(qQ) ~Bg-~a=0 (4.26")
b4
‘ where 8 = fD fzvrdrdz $ 0 (hy Lemma 4.8), o = ID f1vrdrdz. Clearly, the
.ﬂ right side of (4.26') changes its sign when g changes from -® to +%,
» g Hence (4.26) has at least one real root.

Q.E.D.

.o

’ We call the solution of (4.4) regular if wq e c1(5) ) Vz(D). It follows

R

immediately from Lemma 4.10 and Theorem 4.9 that the following theorem is

valid.

Theorem 4.11. There exists at least one q € R such that the solution w_
q

of (4,4) is regular.
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Proposition 4.12. If w_ is a regular solution of (4.4), then
q
q < 9, (4.36)

where q, is defined by (4.10).

Proof: Let wq be the solution of (4.4), and

[ 4
F1(q.z) = wq(ro,z) - wq(ro,h) - (hw-h)(z-h) for z < h

i

— F1(q,z)
F (q) = 1lim .

2 Z+h=0 z=h

Given q ? 94° Assume Vg is regular solution. Then it follows by j

(4.15) and Yo ec'(®) that

1 On the other hand, we have 3
|
J (e <0 in D
q
0 w ‘r = g
. { p I

dw
\ Tn'q|I‘N= I °

Hence w_. has minimum in D, which lies on 9D, Clearly, it just is i

- q

".

ha w (r_,h) € 0. So we have
by e q 0
A

® P - - -
. F1(q,2) (hw h)(z - h)

ﬂf and

€ - - b . .
Fz(q) (hw h) < 0 for g 9, (4.38)

4 This contradicts (4.37), and Yy cannot be a regular solution for ¢q ? 95
-

' Q.E.D.

To complete this section we display the relation between (4.4), (4.6) and

(4.8).
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Theorem 4.13. If g ¢ qyr and Yy is the solution of (4.4), then

" 4 w 20 in D
q

. (4.39)
< ( H) i D !‘2

Moreover, (4.4), (4.6) and (4.8) are equivalent for q ¢ 9y

Proof: By Proposition 4.2 and 4.3 it is sufficient to prove (4.39). Let

: q ¢ q, and Vg be the solution of (4.4). It follows from (4.11), (4.15)

(3.15) and (3.16) that

i < >0, =3|,. > . .
Lw_ <0, warD 0, anII.N 0 (4.40)

It is easily shown by the maximum principle that wq >0 in D. We now prove

the second part of (4.39).

-
Let Qq be defined as in Proposition 4.7. Noting that

w in R
q 1

qQ .
max(w r,H) in D\
( qlgq( H) 1

: and w € CO(E) we may prove that w& e V1(D) (see for instance Kinderlehrer

- '1 -
% and Stampacchia [1980, p. 50}). Hence wg e V1(D) n CO(D). We have

*
Lw" = Lw - L HY =0 in Q by (4.2) and (4.23))
wq wq qq(r, ) q (by (4.2) )

o -—
w" = 0 (by that w" @ C (D) and w" =0) .
q aQ' Y q q' aD

€
2

"

o

in

1}

=]
[5
=]

*
It follows from the maximum principle that w; g Qq. Hence

D nd w'e
a wq = p




., .~

It follows from the theorem that

Corollary 4,14. Under the same assumption as in Theorem 4.13 we have

%‘r >0 . (4.41)

S. The Existence of the solution of (PPW).

In this section we prove that a regular solution of (4.4) corresponds to
a solution of (PPW). Following the framework of Baiocchi et al. [1973], we
establish several lemmas at first.

Throughout this section let wq be a regular solution of (4.4) and let

ﬂq be defined as in Proposition 4.7.

dw
Lemma 5.1. 3—29>o in D. (5.1)

ow
Proof: Let E = {(r,z) € D!g;a < 0}, Then E 1is an open set, and EC Qq.

In fact, if (r‘,z*) en ﬂq, then it follows from (4.36) and (4.39) that
(r ,z) (r H) >w (r ,z) for 0¢z<H
wir ,z ) = r ,H w (r ,z or < z .
ql gq' qr
® &
dw (r ,z )

* » -
Hence —g—a-z-—= 0, and (r ,z ) € E,

If E % @, then by Proposition 4.7 we have

dw
L(s;q')=0 in E .

dw
Therefore 5—3 has a strictly negative minimum in E (since w_ @€ C1(D))
2z Iw q
= r
which l1ies on 9E; but neither on JE N Qq where 3;3 0; nor on D (by

dw
{(4.41)); nor on PG where 3;3 =h, - h > 0; nor on P7 {(by remark 3.2).

This is absurd, and E = @,

Q.E.D.
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Lemma 5.2. If q > 0, then
4 :
3w
r r
dw
Proof. Let v = 5;3. Let E = {(r,z)|v > q}. Then E is an open set, and
E Qq (since it is easy to show that v < q in d\ﬂq). Therefore,
i L1v = r(qu)r =0 in E
9
where Lg =1L - % 3 is still an elliptic operator. Simple computation
- 3 indicates:
r r
0 on 1 V) 7
| v =
r i
q on 3 t
v 0 r vr vr ur
an on T2¥ 4 s Y et :
j
X - 1
4 By maximum principle (see for instance Gilbarg and Trundinger ([1977]) v has
b maximum strictly bigger than q in E which lies on 9E. an argument !
)
similar to that in the proof of Lemma 5.1 indicates that E = @, Similarly we %_
- o
: may prove that E = {(r,z)|v < 0} = .
‘- y
3,9“\ QoEoDc
¢
& Remark 5.1. Similarly we have that if q < 0 then j
q¢ i . .
- I 0 in D (5.3)
3w0

Remark 5.2. If q = 0, then ES = 0, Hence

ke ks i i

2 2 (h --z)2
w
2 2 z

for h €z <h .
W

aliaalae o

It requires that H = h_ . We have assumed that h, < He So v is not

regular solution,




g

Vil e o

Remark 5.3. By using (5.1), (5.2) and (5.3) we may easily show that if

(r,z) € D\nq then

0
ow
Lemma 5.3, -a-—q =0 on T . (5.4)
——— z 3

Proof: It is obvious that

3Yg£r1,H) 3wq(ro,H)

az = 372 = o (5.5)

* *
Let q > 0. Then for r € [r, ,r,[ and A>0 with r + A< r, there

exists 6 e 10,1] such that

] *
9 A 3 H
W&‘r +A,H) wq(r H)

[ 32 - 3z ]/A
* * * *

1 wq(r +X,H-h)-wgfr +A,H) wq(r 'H-h)tfg(r ,H)‘

= 1lim X [ h - g~ }
h*+0
dw(r +06A
= - um 1 (EZ Hh) |2 50 (by Temma 5.2) .
h++0 r r +8A

]
Therefore 55 is nondecreasing function of r on Pa, and (5.4) follows
from (5.5). The proof for q < 0 {s similar.
* * *
For point p = (r ,z ) we define the sets

+ * *
0, =WUr,2Yeplr<cr,z>z1}
%

- * »
Q,=Ur,2YepDlr>r,z<z} .
P

Lerma S5.4. If q > 0, then

o A
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< - .
c o\ for e p\f 5.6
Qp a p q ( )

o ]

c? £ epnam . 5.7
q °r P q (5.7

* — - L} *
Proof: Let p € D\ﬂq and a(r) = w(r,z ) - g{(r,H)s We have r 2 Iye
* y
z h, (by Remark 5.3), (r ) = 0 (Theorem 4.1*), a'(r) < 0 (by Lenma
*
5.2). Hence a{(r) » 0 for r € [ro,r 1, and w(r,z) = g(r,H) for

. *
! r € [ro,r ]« It follows from Lemma 5.1 and Theorem 4.13 that

* *
wir,z) = g{r,H) in {(r,z)lro Sr<r, z €z<H

i.e. Q+* CS\qu
P . =
- For p' = (r',z') e D\?Tq there exists p € D\ﬂq such that r° > r',

+
z’ < z'. Clearly Qp, C Q+, and Q

+. c B\nqo Hence Q;' C E\ﬁqo
P P
For p € 3D (5.6) is trivial. (5.7) is easily seen by reducing to

absurdity and (5.6). {

Q.E.D.

* * L ]
Remark 5.4, For q < 0 and p = (r ,z ) we define

+ * *
R, = {(r,z) eDilr>r , z> 2z}
P
LY - * *
A R,={(x,z)eDlx<r,z<z } .
p _

Then we obtain by similar argument that
+

- - * - -
R, Cpo\Q for e p\&
* q P q

- JER SRR

- * -
7] for ep N’ .,
*+C g P q

L0
o i)

-

.
P

From Lemma 5.4 immediately follows a property of Qq.

Corollary 5.5. Qq is a connected set.

Lemma 5.6. 3ﬂq N D does not contain any vertical or horizontal line segment,

and MM NT_ = ¢o
q 3




]
| Proof: Assume that 39q'“ D contains a vertical line segment [ =
K ' {(r,z) e D|xr = r', z' € z < z"}, Denote N,

= {(r,z) e Dlr > r', 2' ¢ z ¢ z"}, N, = {(r,z) e Dlr ¢ r', 2*' ¢ z < z*}. Then

1 ’ - —
c ‘2 ﬂ * L4 -
‘ N, A and N, C o\ A (by Lemma 5.4)., Hence wq(r,z) gq(r,ﬂ) and

ow
3;3 = q/r in Nyt Lwg = -1 in Ny. Therefore wq|_ is the solution of

N

the Cauchy problem

' (1w = -1 in W

i q 1

1

: w = g(r',H)

; < qll‘. g ’

] I

= =S,
\ 3! P. r' |
By the uniqueness of the solution we have

: w =£i2n£—+-1-(r'2-r2)+ (r,H) in N

. g 2 r a4 99 F’ 1
oo z2

" But w = Hz - 3= on I,. This contradiction proves that 3, N p does not
{;7 contain any vertical line segment. By similar argument and (5.4) we obtain
o3¢ ;
:: that aﬂq N D does not contain any horizontal line segment and
e & M NI = B

q 3

i Q.E.D.

e

Theorem 5.7. If g < 0, and

'_ nq =, v {(r,2) e D|r > Tor Wy < gq(r,H)} (5.8)
)
¢q(r) = sup{zl(r,z) -] Qq} for r e ]ro,r1l (5.9)
¥ (ro> = lim ¢ (r), vq(r1) = lim wq(t) (5.10)

q -
r*r0+o r‘"r1 0

u s




n - DDAt e o P o ” - v
. . . . cm, s N I aactl *‘»""5'»1,;‘”?.@:

u =

> q

] @
]2

+z in D, uq = uqlﬂq (5.11)

then {uq, wq(r)} is the solution of (PPW).
Proof: First we note that wq(r) is a well-defined, strictly increasing,

continuous function for r € ]ro,r1[. In fact, for any r € ]ro,r1[ we have

< r .
wq gq(r,ﬂ) if 2z is small enough since wq = 0 on 1 and qq(r,H) >0

So {zl(t,z) e Qq} is nonempty and wq(r) is well~defined. It immediately

; follows from (5.1) and the definition of ¢q(r) that

d
Q :9 U Y .
. 1 {(r,z) e DIr > rye 0 ¢z < wq(r)} (5.12)
Lemma 5.6 shows that {(r,¢h(r))|ro <rc« r1} is a Lipschitz graph with
2 _ _
regspect to the axes x = r-z, y = r+z. Hence ¢q(r) is a strictly
increasing, continuous function.
By virtue of (5.9), (5.10) and (3.15) it is readily shown that
w(ro) > hw' ¢(r') = He Then (2.6) and (2.7) have been proved. (2.8) is
. obvious.
]
; Now we check (2.4). Since Wy = gq(*,ﬂ) in E/ﬁq we have
]x; w
-3 5;3 = 0, u =% on Fo
o
pe.i
X
4

the rest of (2.4) is obvious thanks to (3.15) and (3.16).
Finally we check (2.9). Given any ¢ € Cz(qq) with ¢ = 0 in a

neighborhood of P2 v (P4 fiaﬂq) U Ps v Fs we have (note (4.23) and (5.12))

2 2
w w
. - —a, (g 3y
ng rfu_*V¥ardz !“q T30 51+ (az2 +1) 5.} drdz

ow
- o g (r 528 - 5 (33 Para

e N T e L SR
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w dw
] g 3y 9 _q %
= ng [az (r 3t 3t) - or (r 3r az)]drdz
1 ] ]
- W w
= - —9a ¥ —9q 3
1l fan rotsrartr g 5 0
q
w , ow dw
- - —a % -l -
fro 2 el R 3 2 (since 3= 0 on F1 U P7)
é
{ ow
. p ay
H = —— = = Q
: -q fro 3 dr + 3% dz (since wq gq(r,ﬂ), rs;g q in D\@)
1
= -q[‘l'(ro.«p(ro)) - W(r1.¢(r1)) + Wro,v(ro)) - \Nr1,¢(r1)); =0 .
|
The proof is completed by virtue of the denseness of {y} described above |
in K1.
Q.E.D. 5‘
If q < 0, then by using similar arguments we obtain that ¢q(r) is
strictly decreasing, continuous for r € }ro,r1[, and that qpq(r1) = H, This
. is absurd. Hence we obtain (recall (4.36) and remark 5.2): 1
;o Proposition 5.8. If Vg is a regqular solution, then
3 0<q<q, (5.13)
N
?; Proposition 5.9. Let %
A * i
Q = {qlwé is a regular solution of (4.4)} . (5.14)
ff; Then:
{ * ,
Q C10,q4i (5.15)
" RS
i
B Q" is a closed set (5.16)
d w_. is nonincreasing on o' (5.17)

-

q .
{
Proof: (5.15) is clear by virtue of (5.13). (5.16) follows immediately from

Theorem 4.9 and the continuity of G(q) (see the proof of Lemma 4.10). Now

we prove (5.17). Let S PTAR OY e Q', ay < Ay and




E={(r,z)€Dlw=w -w <0} ,
; 9 9

'J Then w <w €g (r,H) €<g (r,H) in EN {r > r . }. Hence EC @ , and
; 9 9 9 9, 0 9,
Lw € 0 in E (by Proposition 4.4 and 4.7). w has strictly negative minimum

on E which 1ies on 9E; but not on dEN D where w = 0; nor on PD

3
where w 2 0; nor on P6 where 3§ = 0; nor on P7 (by remark 3,2). This

is absurd. Hence E = ¢,

i Q.E.D.
: Let q - ipf(q}, 9y = sgpfq}. By (5.15) and (5.16) we have
1 Q Q
oo -«
ey € Q0 Gy > 0r gy < qg -
i
From (5.17) follows immediately the theorem
ii Theorem 5.10, For any q € Q' we have
- w 2w ®w_ in D . (5.18)
| 9, q
l!
-
b %
b4
3
i
@
8
b
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then

then

The proof of Theorem 3.A

Taken § with 0 < 8§ ¢ r_.
w, = {(r,z) e Dl0 ¢ r < 8}

{(r,z) e D|r > §/2}

is the corresponding partition of unity,

D=m1uw2u Agssume P., P

(r,z) €D

such that

We may choose p

v

2]
NVjoy o

2]
n

k._ﬂ_..._ -————

Nl - ~—=~—=-_0
"
"
(]

o]
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A

\
n

It is to show that

L(p,v) = fo, + VL, + 2‘791'Vv

1
(2)

34

3
1 =3 P =Pl g=0 -

|r nw I nw
D 1 N

It follows from v € V2(D) that W e v1(w1). Hence
1 -~
Vv e wz(w1)
where ;1 is three-dimensional domain obtained by rotating w1 around z-
axis. By the embedding theorem we have

Vv e LP(Z»1) (p<6) o
So Vv e LP(W1;r) and
Lip,v) € Lp(w1;r) (p < 6 -

Considering p_v as the solution of three-dimensional problem (2), we have

1

2 ~

1
By using the embedding theorem again and returning to two-dimensional dmain we

obtain

B - 3
p1v ec (m1) (8 < 5) . (3)

In uz = polygon A'BCEPQ' the operator L is non=-singular. It is

easily seen that

A(92V)=g
Ip, V)
ol - 5 =0Vl &=
Panb anwb 3
where
=p_f + vLp +2Vp-Vv-1-a—(pv)eLp1(u) (p, < 6)
9="P 2 2 r ar ‘P2 2 1 y

1 1

Let v, = * — 2n where * expresses convolution ti

0 g ;7'5-50 p u operation,
2" r +z

then Avo = g and

-4q-

® - B “ -

b
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2 k, = 5
Vo © Wp1(wz) cc¢ (Uz) (k < 3) .

Let Vq =V = Dzv, then

é v, =0
J Vilau)por = Vo dw)\po’
\
o
\ 3n 'p0' " 3n 'pp' °

By assumption v € V2(D) we have

ovewz(w)Cck'(m) (0<k'<-1) .
2 22 2 2

Hence

v,eck(u) (0 <k <
1 2 2 ¢

By using theorem 4.4 of Volkov [1965] (Trudy of Mathematics Institut of
Steklov, 77 (1965), 113-142) we have
B - 5
v1 ecC (u&) (B < 3) o
So
[ 5
P,V € CT(w,) (B < 3 (4)

It follows from (3) and (4) that

ve cB(E) (8 < %) .
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ABSTRACT (continued)

Q= {(r,2)}]0 < r <rg 0<z< h} u {(r,z)|ro <r<r,0<z<e(n} ,

Kl is a convex set in the weighted Sobolev space Vl(Q).

We reduce the problem to three families of variational inequalities by
using a type of "Baiocchi transform", study equivalence of the three families
and regularity of the solutions of the variational inequalities.
prove the existence of the solution for the well problem.

Finally, we
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